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ABSTRACT

Many applications lead to nonlinear, parameter dependent equations

H(y,t) = yo, where H: Y x T - Y, yo c rge H, and the state space Y is

I infinite-dimensional while the parameter space T has finite dimension.

The case dim T = I is of special interest in connection with continuation

I methods. For this case, a general theory is developed which provides for the

existence of solution paths of a rather general class of Such equations and

I of their finite-dimensional approximations, and which allows for an assessment

of the error between these paths. A principal tool in this analysis is the

theory of nonlinear Fredholm operators. The results cover a more general

class of operators than the mildly nonlinear mappings to which other approaches

appear to be rest'ricted.

i . ' . ...,,-.

I / i



I,
On the Discretization Error of Parametrized

Nonlinear Equations I )

by

James P. Fink
2 ) and Werner C. Rheinboldt

2 )

1. Introduction

Nonlinear parameter-dependent equations of the form

H(y,t) = yo (1.1)

arise in connection with many equilibrium problems in science and engineering.

Here y and t vary in some state space Y and parameter space T, respectively,

H is a mapping from Y x T into Y, and y0  is a given point in the range of

H. Under appropriate conditions, the set of all solutions (y,t) of (1.1) forms

a manifold in Y x T and we wish to analyze the properties of this manifold.

In most cases, the state space Y is infinite-dimensional and the parameter

space T finite-dimensional, although infinite-dimensional parameter spaces have

been considered as well (e.g., see [1]). Thus, for practical computations, there

is a need for introducing finite-dimensional approximations of the equation (1.1).

This leads to questions about the relation between the properties of the solution

manifolds of the original and the discretized equations and the errors introduced

by the approximation. Relatively little has been done so far in this area. With-

out any claim of completeness, we mention here only the articles [2], [5], [7],

[12], [15) which, in different settings, address the a priori estimation of the

1) This work was supported in part by the U.S. Air Force Office of Scientific
Research under Grant 80-0176, the National Science Foundation under Grant
MCS-78-05299 and the Office of Naval Research under Contract N-0014-80-C-0455.

2) Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh,
PA 15261.
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approximation errors in the case of a one-dimensional parameter space. In

[3], some a posteriori estimates of these errors are considered for certain

two-point boundary-value problems.

The restriction to one-dimensional parameter spaces is not as severe as

it might appear. In fact, all available computational methods for analyzing

solution manifolds of (finite-dimensional) parametrized equations consist

principally of some form of continuation process for the trace of paths on the

manifold. Such paths are the solution manifolds of some equation involving a

one-dimensional parameter.

In this paper, we present a general theory which provides for the existence

of solution paths of a rather general class of nonlinear equations with a one-

dimensional parameter, as well as of their finite-dimensional approximations,

and which allows for an assessment of the error between these paths. A principal

tool in this analysis is the theory of nonlinear Fredholm operators. As in [5],

[7), the error estimates are derived from a form of the implicit function theorem.

But our results cover a more general class of operators than the mildly nonlinear

mappings to which the approaches in L5, [7] are restricted.

2. Solution Manifolds and Local Parametrizations

In order to avoid repetition, we shall assume throughout this paper that

the following information has been given:

(i) X,Y real Banach spaces;

(A)
(ii) F: E cX - Y a mapping of class Cr(E), r > 1, on some

open subset E c X.

In finite dimensions, an equation involving an m-dimensional parameter corresponds I
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to the case dim X - dim Y = m. The analog in infinite dimensions is the

requirement that ker DF(x) has dimension m for the points x under

consideration. More specifically, we are interested in regular points of

F, that is, those x e E for which DF(x) maps X onto Y. Hence, we

assume that the m-regularity set

Rm(F) = {x e E: dim ker DF(x) = m, DF(x)X = Y} (2.1)

is nonempty for some m > 1. Then the restriction of F to R m(F) is a non-

linear Fredholm operator of index m (e.g., see [4]), and this observation is

at the center of our analysis.

Lemma 2.1: The sets Rm(F), m > 1, are either empty or open in X.

Proof: Suppose that x e Rm(F). Then by the continuity of DF and a basicmI
perturbation property of Fredholm operators (e.g., see [13, p. 115]) there exists a

6 > 0 such that DF(x+ ) is again a Fredholm map of index m for all E c X

with IRH < 6. Moreover, we have dim ker DF(x+E) < dim ker DF(x), whence

dim coker DF(x+0) = 0 and dim ker DF(x+C) = m.

We are interested in examining the solution set of the equation

1I

F(x) = yo, x e Rm(F), (2.2)

for a fixed yo c F(Rm(F)), that is, the set

Mm(Y) = F(')(yo) n Rm(F). (2.3)I
I
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For any x0  Rm(F), there exist closed subspaces Vc X such that

X = V ker DF(x ). For any such choice of V, the restriction DF(x )IV
0 0

is an isomorphism between V and Y, and its inverse

Av = (DF(xo)IV)-I E L(Y,V) (2.4)

is a right inverse of DF(x ). With this, equation (2.2) may be written in

the form

F(t + AvY) = Yo, t e ker DF(xo), y . Y, t + Avy e Rm(F), (2.5)

which corresponds to (1.1) with Y as the state space and T = ker DF(x0 )

as the m-dimensional parameter space.

The basic result about the solution set (2.3) may now be phrased as

follows:

Theorem 2.2: Suppose that the information (A) is given and that R m(F) is non-

empty for some m > 1. Then, for any y0 E F(Rm(F)), the regular solution set

M m(yo) is a nonempty, relatively open, m-dimensional Cr-manifold in X.

Proof: The proof proceeds along the lines of the finite-dimensional analog

given in [10]. Let xo e Mm(yo ) and V be a subspace of X such that

X - V 4 ker DF(x ). With the corresponding projection P: X - ker DF(x ), we

define the mapping G: E - Y x ker DF(x ) by G(x) = (F(x),Px) for X E E.
0

Then DG(x) = (OF(x)C,P ). & E X, and DG(x ) is nonsingular. Hence, the

inverse function theorem applies and G maps some neighborhood U = X of x0

Cr-dlffeomorphically onto a neighborhood S of (yo ,Px). Evidently now, G

maps Mm(yo) A U Cr-diffeomorphically onto ({y,}x ker DF(xo)) r . and, since I
I
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{yo } x ker DF(x0 ) is Cr-diffeomorphic to Dm, the result follows.

As mentioned in the introduction, the computational procedures for analyzing

the solution manifold Mm(yo) of (2.2) consist principally of methods for

approximating paths on this manifold. Such a path is defined as the solution

manifold of some reduced equation defined by a Fredholm operator of index 1

on its regularity set. Therefore, from now on we restrict ourselves to the

case when (A) is given and RI(F) is nonempty. For ease of notation, we will

write R(F) = RI(F) and M(y0 ) = M1(yo ).

We consider first the question of the choice of suitable local parametrizations

of the one-dimensional manifold M(y ). It turns out that a possible choice

corresponds to a typical approach used in many continuation procedures.

In line with the earlier discdssion leading to (2.5), a local parametrization

of M(y ) at a given point x0 C My o ) is defined as a triple {V,A,z } con-

sisting of a closed subspace V of X, a linear operator A e L(Y,V), and a point

zo e X such that

(i) Vn ker DF(x o) {0};

(ii) A is an isomorphism of Y onto V;
(2.6)

(iii) zo  V;

(iv) X = V(T O, To = span {zoY.

As indicated in Figure 1, we consider the family of parallel linear mani-

folds
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x 0 + tZ0 + V t C R. (2.7)

The conditions (2.6) ensure that these manifolds are transverse to ker DF(x 0)

and hence that, locally near t =0, the solution manifold may be parametrized

in terms of t. This is the content of the following result:

[Theorem 2.3: Let (A) be given, IZ(F) t c0, and {V,A,z 0 a local Para-

metr-'zation of M(yo ) at a point x 0 C M(y0 ). Then there exists an open

Iinterval J4c1R , 0 E J, an open neighborhood U =.X of x 0  and a unique

j C-map q: J - Y, such that

M(y ) A U = {x e X: x = x0 + tz0 + An(t), t sJ1. (2.8)
00 0

jProof: Let B: lR1 x Y -~ X denote the affine mapping B(t,y) x x0 + tz 0 + Ay,

t e Il y e Y, and define H: B(-1 )(E) -~ Y by

H(t,y) = F(B(t~y))- yo, (t,y) E: B(-1 )(E). (2.9)

Then H is of class Cr on B( 1)(E) and H(0,0) = 0. Moreover, since A

is an isomorphism of Y onto V and DF(x 0) maps V one-to-one onto Y, it

3follows that D yH(0,0) = DF(x 0)A is an isomiorphism of Y. Therefore, by the

implicit function theorem, there exists an open interval Jc p , 0 E J, a

neighborhood S c Y of y = 0, and a unique Cr-function n: J -~ S such that

H(t,n(t)) = F(x 0 + tz 0 + Arl(t)) - yo= 0, t C J.

With U =8(J S ), the uniqueness of q ensures that (2.8) holds.
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In the standard continuation methods, z0  defines the predictor line and

the corrector produces the step An(t) from the predicted point x0 + tz0

to the point x0 + tz0 + An(t) on M(yo). A particular local parametrization

is obtained if we choose any nonzero vector z0  ker DF(x0 ) and the map AV

of (2.4) for any closed subspace V = X such that X = V(D ker DF(x ). This

choice corresponds essentially to the pseudo-arclength parametrizations proposed

by various authors (e.g., see [8]).

The question arises as to how far a particular local parametrization {V,A,zo i

can be extended. For this, note that the set

A = {x E E: DF(x)A is an isomorphism of Y} t2.10)

is certainly nonempty and open. With this observation, a generalization of a

result in [9] may be phrased as follows:

Theorem 2.4: Under the conditions of Theorem 2.3, let Mo c X denote the

maximal connected subset of M(y0 ) fl A which contains xo. Then there exists

an open interval J F1 , 0 E J., and a Cr-function n.: J. - Y such that

= {x E X: x = x0 + tz0 + An.(t), t E J.}.

Proof: Since X = V T0 , each x E X can be written uniquely in the form

x = x0 + tz0 + Ay for (t,y) sl 1 x Y. Thus, each x, M. may be expressed

uniquely as x, = xo + tlz o + AyI  for (tl,yl) E B(-1 )(E), where B is defined

in the proof of Theorem 2.3. Let H: B(-I)(E) - Y be given by (2.9). Then,

for any x, c M.., the derivative DyH(t1 ,y1 ) = DF(X)A is an isomorphism of Y,

and we may apply the implicit function theorem to ensure the existence of an

open interval JxlC IR, tI E Jx, a neighborhood Sx c Y of yl, and a unique

.
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I'
Cr -function Jxl 4 Sl such that H(t,n (t)) - 0 for t E J. Con-

1I 1 1lI I
sider the projection t:]R x y IR and its restriction to N = B( )  ).
Then, for each xI c M, and hence each (tl ,yl) £ a,, there exists an open

interval JxC R containing tI  such that 7r = 71( is a one-to-one

mapping of T -l)(J ) onto Jx. In fact, we have

7-l(t) = (t,l (t)) , t E Jxl
ODx

Thus, ito, is a local Cr-diffeomorphism of N. to IR1. A classical result of

topology states that, as a local homeomorphism from the connected Hausdorff

space N to 1R1, T0 must be a homeomorphism from N. onto J OD (NC).

Now with the other projection p: IR1 x y - Y we may define rim: J. Y by

0 =bo tIf and the result follows.

The condition that, for x F Mo , the mapping DF(x)A is an isomorphism

of Y means geometrically that a local parametrization {V,A,z } is valid for

the segment of the solution path M(yo) between the points x_ and x+ closest

to x0  at which x + V and x+ + V are tangent to M(y ) (see Figure 1). In

standard terminology, these are the closest limit points of the path with respect

to the decomposition X = V 9 span(z ).

3. Finite-Dimensional Approximations

In this section, we turn to the formulation of suitable approximate problems

for (2.2). In many applications, one has X = Y x1Rl; that is, a particular

component of X is identified as a parameter and only the complementary component

Y needs to be discretized. We generalize this situation by assuming that a

splitting

ii
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X = Z T, dim T = 1 (3.1)

has been given together with an operator which relates Z to Y: namely,

Q E L(X,Y), T = ker Q,

(3.2)

QJZ c L(Z,Y) is an isomorphism.

As in the previous section, suppose that our basic data (A) are given and

that R(F) = R1(F) is nonempty. A discretization of the problem is specified

by a set {PhI of projections Ph E L(Y) of finite rank, indexed by positive

h > 0, such that

im Phy = y, y E (3.3)
h4O

With the families of subspaces

h= h' Zh = (QIZ) Yh' Xh = ZhOT, (3.4)

the approxinate problem is then given by

Fh(x) = Yoh' x e R(Fh), Yoh = PhYo '  (3.5)

where

Fh: Eh = Xh Yh' Fh(x) = PhF(x), x E Eh = E n Xh. (3.6) r

For ease of discussion, we call the information given by the projections {Ph 0

the subspaces (3.4), and the approximate equations (3.5) and operators (3.6) a

basic approximation of the problem (2.2).

... . .. .. .. . -. . ... J
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The general question we address in this and the next section is whether

the solution manifolds of the discretized equations (3.5) approximate the

I solution manifold M(y0 ) of the original equation (2.2) when h tends to

zero. More specifically, in this section we consider the existence of

solutions of (3.5) and take up the matter of error estimates in the subsequent

section.

For the analysis of the approximate problems, it is convenient to extend

the discrete operators (3.6) to all of E c X as follows:

Fh: E * Y, Fh(x) = (I-Ph)QX + Ph(F(x)-Yo), x E E, (3.7)

where I denotes the identity on Y. Clearly, Fh is a cr-mapping and the

following properties hold:

Proposition 3.1:

(i) Fh(x) = 0 for x 6 E if and only if x E Eh and Fh(x) = Yoh;

(ii) DFh(X)Xh=Yh9 x E E;

(iii) ker Dh(X) Xh, x e E;

(iv) DPh) W E L(X,Y) is a Fredholm operator of index 1 for all x E E;

(v) PhDF(x)Xh = h for some x e E implies that x E R(Fh).

Proof: The proofs of (i), (ii), and (iii) are straightforward. For example, if

Fh(x) = 0 for some x e E, then Qx = PhQx - Ph(F(x)-yo) E Yh implies that

x Xh and hence that Fh(x) = PhF(x) = Fh(x) - (I-Ph)Qx + PhYo = Yoh. The

converse of (i), as well as (ii) and (iii), follow analogously. The property

I
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(iv) is a consequence of the fact that DFh(X) = Q -Ph Q + PhDF(x) is a compact

perturbation of the Fredholm operator Q E L(X,Y) of index 1. Since

DFh(x)lXh = PhDF(x)Xh, we obtain (v) from (iii) and (iv) if only it can be

shown that dim ker DFh(x) = 1. But, since by assumption rge PhDF(x)IXh = Yh

and dim Xh = dim Yh + 1, this follows immediately from dim ker PhDF(x)IXh +

dim rge PhDF(x)IXh = dim Xh.

Clearly, any comparison of the solution manifolds of (2.2) and (3.5) must be

done locally. Let x0 E 14(y 0 ) be given and suppose that {V,A,z 0 is a local

parametrization of M(y0 ) at xo. This parametrization must relate in a suitable

way to the basic discretization introduced above, and the compatibility condition

may be expressed in a variety of forms. Rather than go into a detailed discussion

of various possible equivalent definitions, we introduce here simply the following

technical condition which is relatively easy to verify in many practical situations:

(C) I hDFh(x0 )AyII > yIIYlI. y E Y, for all sufficiently small h > 0.

Here y > 0 is a constant independent of y and h.

Compatibility conditions of this form typically arise in the consideration of

projection methods. For example, condition (C) is related to the notion of stable

convergence of linear operators defined and discussed in [14].

The condition (C) can be enforced in a number of ways. For example, by a

judicious, although somewhat restrictive, choice of the discretization and pa-

rametrization, DFh(xo)A turns out to be the identity on Y and (C) holds with

y = 1 for all h > 0. As discussed in Section 7, this case includes the so-

called reduced-basis technique (e.g., see Ill]). On the other hand, as noted

at the beginning of this section, in many applications the formulation of the

.j.
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problem includes a natural splitting of the space X, and then (C) becomes

in essence a condition on F if we are not prepared to restrict the dis-

cretizations and parametrizations. In particular, we show in Sections 5 and

6 several classes of operators F for which (C) is easily verified.

As a first consequence of (C), we obtain the following result:

Proposition 3.2: If (C) holds, then PhDF(xo)Xh = Yh and x0  R(Fh) for

all sufficiently small h > 0.

Proof: Evidently, (C) implies that DFh(Xo)A e L(Y) is an isomorphism. Hence,

for Yl E Yh' there exists a Y2 E Y such that DFh(x0 )AY2 = yl, and therefore

QAY2 = PhQAY2 - PhDF(xo)AY2 + yl E Yh From this it follows that Ay2 C Xh ,

(I-Ph)QAy2 = 0, and PhDF(xo)AY2 = y,. The second assertion is now a direct

consequence of Proposition 3.1 (v).

In order to prove the existence of solutions of the approximate problems

(3.5), we make use of a generalized form of the inverse function theorem. As

noted in [5], the usual proof of this theorem provides a Lipschitz condition

for the inverse function. In our terminology, the result may be formulated as

follows:

Theorem 3.3: Let (A) be given, where, at some x0  E, (i) DF(x ) E L(X,Y) is

an isomorphism onto Y with IIDF(x 0)-l < 1/y, and (ii) there exists a 6 > 0

such that

HIDF(x)-DF(xo) W < x C B(x0,6) = {x £ (: Jjx-xojj < 6} a-E.

Then there exists a unique cr-map G: B(F(xo),y6/2) - 8(xo,6) for which

1
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F(G(y)) = y for all y E B(Fx 0),y6/2) and

2

JIG(yl)-G(y 2)fl < J IYl-Y2H1- Y1 ,Y2 E B(F(xo),y6/
2).

In order to prepare the way for the application of this theorem, let

B: Y - X be the affine mapping given by By = 0 + Ay, y E Y, and define

the operators

Hh: B(I) (R(F)) - Y, Hh(y) Fh(BY), y E B(1I(R(F)). (3.8)

Clearly, Hh is of class Cr and DHh(y) = (I-Ph)QA + PhDF(x0+Ay)A.

We wish to apply Theorem 3.3 to Hh. The two conditions of the theorem

are verified in the following lemma:

Lemma 3.4: Let (C) hold. Then DHh(O) e L(Y) is an isomorphism of Y with

JIIDHh(0) 1I < 1/y for all sufficiently small h > 0. Moreover, there exists

a 6 > 0, independent of h, such that

JJDHh(y)-DHh(O)II <2 whenever IlYlH < 6. (3.9)

Proof: The first part is an immediate consequence of (C). In order to prove

(3.9), note first that, from (3.3) and the uniform boundedness principle, it

follows that

I (Phi I_. for all sufficiently small h > 0 (3.10)

with a constant a > 0 which does not depend on h. Hence, we find that

A
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IDHh(y)-DHh(O)1 = IIPh(DF(xo+Ay) - DF(xo))AIII
< aIIAl IIDF(x0+Ay) - DF(x0)1,

and (3.9) is a direct consequence of the continuity of DF.

With this, we may now apply Theorem 3.3 to Hh for sufficiently small

h > 0. This ensures the existence of a unique Cr-function

Gh: so = B((I-Ph)Qxo,y6/2) - B(0,6) (3.11)

for which

(i) Hh(Gh(y)) = y, y E Bo.

(3.12)

(ii) IliGh(Yl)-Gh(Y2)1 < i lyl-Y2I, y1,y2 E Bo .

Since y and 6 are independent of h and (I-Ph)Qxo - 0 as h- 0, we see

that 0 E B for all sufficiently small h > 0. Hence, Yh = Gh(O) satisfies

Hh(yh) = 0, and from (3.12) (ii) with yl = 0 and Y2 = (I-Ph)Qxo it follows

that 1I411 < (2/y) II(I-Ph)QxolI. Hence, for xoh = xo + Ayh , we obtain

Fh(xoh) = Hh(y h ) = 0 as well as xoh - xo when h - 0. Moreover, Proposition

(3.1) (i) implies that Xoh E Eh and Fh(xoh) = Yoh- In other words, Xoh is

the desired solution of the approximate problem (3.5) corresponding to xo. These

solutions have several interesting properties:

Proposition 3.5: If (C) holds, then xoh E R(Fh) for all sufficiently small h.

Proof: Since R(F) is open, we certainly have xoh F R(F) for all sufficiently

small h. Moreover, by Proposition 3.2, we also know that xo E R(Fh). But, in

I
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order to conclude that the Xoh ultimately belong to R(Fh)9 we need to use

the uniformity implied by (C). For this, we write

DFh(xoh)A = DFh(xo)A + (DFh(xoh)-Dph(xo))A

and note that, for all sufficiently small h > 0, it follows from Lemma 3.4

that DFh(xo)A e L(Y) is an isomorphism with 1J(DFh(xo)A)'l < l/y and,

moreover, that, by (3.9) with y = Yh'

II(DFh(xoh)-DFh(xo))AII <

Therefore, DFh(xoh)A e L(Y) is also an isomorphism of Y and thus DFh(xoh)

must map X onto Y. Since, by Proposition (3.1) (iv), DFh(xoh) is a Fredholm

operator of index 1, the result follows.

Proposition 3.6: If (C) holds, then V n ker DFh(xoh) to"

Proof: In the proof of Proposition 3.5, we saw that DFh(Xoh)A s L(Y) is an

isomorphism of Y for sufficiently small h. Hence, if DFh(xoh)v = 0 for

some v e V, then v = Ay for some y e Y, and therefore DFh(xoh)AY = 0,

whence y = 0 and thus also v = 0.

I
We collect our results up to this point in the following theorem:

I
Theorem 3.7: Let (A) be given and R(F) t *. Suppose that a basic approximation

has been chosen and that {V,A,zo } is a local parametrization of M(y0 ) at

xo E M(yo), where the compatibility condition (C) is satisfied. Then, for all

sufficiently small h > 0, the approximate problems (3.5) have solutions

I
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Xoh e R(Fh) for which lim x = xo . Moreover, for any local parametrization
oh

of the form {Vh,(PhDF(xoh)lVh)',Zoh} of the solution mnifold F ')(yoh) ( R(Fh)

of (3.5) at Xoh, Theorems 2.2, 2.3 and 2.4 apply.

4. Error Estimates

Theorem 3.7 ensures the existence of a solution segment for the local

approximate problem (3.5) under the same general conditions on the operator F

needed to establish the existence of a solution segment for the full problem

(2.2). If error estimates are desired, however, then additional smoothness

conditions are required for F. Moreover, the parametrizations of the two

curves cannot be chosen independently, but must be such as to allow for a specific

association of comparable points.

For the derivation of the error estimates, we use a form of the implicit

function theorem formulated in [5] which follows from Theorem 3.3.

Theorem 4.1: Let X,Y,Z be Banach spaces, and P: S = X - Y a Lipschitz-

continuous mapping with Lipschitz constant Y2 > 0 on the subset S of X.

Let F: E cX x Y - Z be a Cr-mapping on a neighborhood E of S x P(S) such

that (i) for each x E S, D yF(x,4(x)) is an isomorphism of Y onto Z for

which suP{IIDyF(x,((x)) -11: x e S} < and sup{jIDxF(x,P(x))Il: x c S1 I '1 1

and (ii) there exists a monotonically increasing function t: R -]R+ for

which

IDF(x,y)-DF(x0,D(x0)) < t(p) l(x,y)-(x 0,4(x0 )!, x0 E S,

(x,y) E B((XoO(Xo)),p).

I
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Then there are constants a > 0 and b > 0, depending only on yoY 1 ,Y2 , and

Z, such that, for sup{HIF(x oDX )I1: x0 E S} < E = a/2, there exists a

Cr-function G: U B(xoa) - Y which satisfies
xo0CS

F(x,G(x)) = 0, x E .) B(x0,a),XocS
0 (4.1)

G(B(x 0a)) C8(4(X0 ),b), x0 E S,

and

lG(x)- (Xo0)1< Co (lX-Xojl + HIF(xo,o(xo))ll), x0  S, x E Bxo0a),

(4.2)

where the constant C0 > 0 depends only on yo and y,.

In order to set up a situation in which we can use this theorem, we continue

to assume the conditions of Theorem 3.7. By Theorem 2.3, the original problem

(2.2) has a solution segment x(t) = x0 + tz0 + AI(t) defined for t in an

open interval J c 1  containing t = 0. By the continuity of OF, there exists

a nontrivial compact subinterval J C , 0 E J0 9 such that

IIDF(x + tz + An(t)) - DF(x 0)II < < - , t E Jot (4.3)

where a is defined by (3.10) and y by condition (C).

Proposition 3.6 provides a clue how to proceed because it suggests that the

parametrization {V,A,z o} of the original curve may also be suitable for the

approximate curve. With this in mind, we define again an affine mapping

B: IR x Y X by B(t,y) = xo + tzo + Ay, t JR1 , y c Y, and with it the

operator

'1I
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Hh B(-l (E)cR x y y, Hh(t,y) = Fh(B(ty)), (t,y) E B-(E).

(4.4)

Clearly, Hh is of class Cr with derivatives

I
DtHh(t,y) = DFh(xo+tzo+Ay)zo = (I-Ph)QZ° + PhDF(x +tz +Ay)z o0

DyHh(tly) = DFh(xo+tzo+Ay)A = (I-Ph)QA + PhDF(xo+tzo+Ay)A.

The following three lemmas show that Hh satisfies the conditions of Theorem

4.1.

Lemma 4.2: For sufficiently small h and for each t E Jo. DYHh(ttn(t)) is

an isomorphism of Y and we have suP{(DyHh(tln(t))- 11: t E J0} < y, where

Y is independent of h.

Proof: The proof proceeds along the lines of Proposition 3.5. In brief, by

condition (C), 0yHh(OO) = DFh(Xo)A is an isomorphism of Y with

Dy H h (0,o)'1 < l/y. From this, it follows that DyHh(t,n(t)) is an iso-

morphism for t c Jo and now (4.3) can be used to complete the proof.

Lena 4.3: For sufficiently small h, we have sup{IIDtHh(t,n(t))HI: t E J0
} < y1,

where y, is independent of h.

Proof: This estimate follows directly from (3.10) and the continuity of

DF(xo + tzo + An(t)) for t in the compact interval Jo"

0 0 0*
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Lemma 4.4: im sup IIHh(tn(t))( = 0.
hO teJ0

Proof: We have

sup 1IHh(t n(t))H < Il(I-Ph)QxoII + MII(IPh)QzoII + sup II(I-Ph)QAn(t)II,
t J 0  tEJo

where M = max ItI. By (3.3), it follows that (I-Ph)Qxo - 0, (I-Ph)Qzo - 0,
t Jo

and (I-Ph)QAn(t) + 0 pointwise for t c Jo" From (3.10) and the continuity

of W'(t), we obtain, moreover, that (I-Ph)QAn(t) - 0 uniformly on Jos which

implies the result.

If we assume now that DF satisfies a Lipschitz condition, then we are in

a position to apply Theorem 4.1. More specifically, suppose that DF is

Lipschitz-continuous on bounded subsets, that is, that
I

IIDF(XlI)-DF(x 2)11 < t(p) 11l X-211, XlX 2  c E, x 2  E B(xI,P), (4.5)

1 1
with some monotonically increasing function e: ]R+ -).R+. Then we obtain the

following theorem:

!
Theorem 4.5: Suppose that the conditions of Theorem 3.7 hold and that DF

satisfies (4.5). By Theorem 2.3, the original problem (2.2) has a solution

segment x: J a R E defined on an open interval Jc.IR 0 e J. Then

there exists a compact subinterval Jo c J, 0 E J0 9 such that, for sufficiently

small h, the local approximate problem (3.5) has a solution segment xh: Jo Eh
h 0 h

and

rI
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I x(t)-xh(t)H1 < CII(I-Ph)Qx(t)II, t e Jos (4.6)

Iwhere C is independent of h and t.

Proof: By applying Theorem 4.1, we obtain the existence of a Cr-function

nh: Jo - Y  such that Hh(tnh(t)) = 0 for t e J0  and

IInh(t)-n(t)II < CoIIHh(t,n(t))I1, t E Jo* (4.7)

where C depends only on y and Yl and hence is independent of h and

t. With xh(t) = x° + tz0 + Anh(t), we have Fh(xh(t)) = Hh(t,nh(t)) = 0 for

t s J0  Proposition 3.1 (i) shows that xh(t) E Eh and Fh(xh(t)) = Yoh;

that is, xh: Jo - Eh is a solution segment of the local approximate problem

(3.5). Finally, the estimate (4.6) follows from (4.7) and

1Ix(t)-xh(t)lI = 1IA(n(t)-nh(t))II 1 HAIl CoI1Hh(tn(t))l

= C0IAII (I-Ph)Qx(t)II, t E Jo*

It is worth noting that Lemma 4.4 implies a uniformity in this estimate.

In other words, we have the following result:

Corollary 4.6: Under the conditions of Theorem 4.5, we have

x
ix(t) = lim xh(t) uniformly for t E Jo. (4.8)

I
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5. Mildly Nonlinear Problems

The remaining three sections of this paper are devoted to examples of

our general theory. We begin by showing that for mildly nonlinear operators

our assumptions, and especially condition (C), are naturally satisfied. This

covers the case considered in [5].

As noted at the beginning of Section 3, in many applications we find that

X = Y x . Let Q E L(X,Y) be the natural projection

Q(uX) = u, x = (uX) £ X. (5.1)

Let X be another Banach-space, K e L(X,Y) a compact mapping, G: X + X an

operator of class Cr, r > 1, and define

F: X - Y, F(x) = Qx + KG(x), x c X. (5.2)

With x = (u,X), our problem (2.2) then takes the familiar form

u + KG(u,X) = y0  (5.3)

Many elliptic boundary-value problems can be written in the form (5.3).

For example, consider the problem

n a
(aij({)u) + g(u,X) =0 in 0,

i,j=l i
(5.4)

u =0 on 3sl,

n
where Q is a suitable bounded domain in IR , the coefficients a.. are

sufficiently smooth, and the linear part L is strongly elliptic. A weak

formulation of (5.4) is
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,2 ai au w + ~g(u) d = 0, w £ Ho(a). (5.5)
3u Jw

Under appropriate regularity conditions, any weak solution u £ Hl(Q) of

(5.5) turns out to be a strong solution of (5.4). In order to write (5.5)

in the form (5.3), suppose that g defines a cr-mapping, r > 1,
1~ x 1  -

G: Ho(Q) x I H-(2). For the strongly elliptic bilinear form0

f ia~u,w) = J ( ) au Uwd ,W E H~ (2), (5.6)
F, i,j l i  j 1

let K: HI(Q) - HI (Q) be the linear operator defined by

0

a(Ku,w) = (u,w)o, u c H- I(Q), w E Hlo(0), (5.7)

where (uw) o  is the inner product on L (Q). Then K: L 2(2) H H(Q) is

compact and the weak formulation (5.5) is equivalent to (5.3) for yo = 0.

As in Section 3, we introduce a family {Ph } of projections Ph c L(Y)

of finite rank such that (3.3) holds and define the subspaces Yh = PhY '

Xh = Yh xIRl and Zh = Yh x {01, h > 0.

With Fh as defined in (3.7), the following lemma is the key to the

applicability of our results to (5.3):

Lemma 5.1: For the problem (5.3) and for any fixed xo = (uo,Xo) c E, we have

lim Doh(xo) = D (xo ) in the uniform operator topology on L(X,Y).
h-*O

Proof: Evidently, the definitions of thc operators F and Fh imply that

DF(xo ) - DFh(xo ) = (I-Ph)KDG(xo), and the compactness of K ensures that

(I-Ph)KDG(xo) * 0 in the uniform operator topology on L(X,Y).
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Next, let {V,A,z 1 be a local parametrization of M(y ) at a point

x0 = (u0 Ix0 ) E M(y0 ). Then we can verify the following key fact:

Lemma 5.2: For problem (5.3), condition (C) is satisfied.

Proof: Once again we proceed as in the proof of Proposition 3.5. Clearly,
DF(x )A is an isomorphism of Y, and hence the result is a direct consequence

of the fact that, by Lemma 5.1, lim DFh(xo)A = DF(x )A in the uniform operator

topology on L(Y).

With this, we have shown that, for mildly nonlinear operators, our basic

assumptions indeed are satisfied and hence that Theorems 3.7 and 4.5 apply. We

note, in particular, the form of the estimate (4.6) in this case. If, as in

Theorem 4.5, x(t) = (u(t),(t)), t c J0, and xh(t) = (uh(t),Ah(t)), t E Jo

denote the points on the solution segments of the original and approximate

problems, respectively, then (4.6) becomes

Ilu(t)-uh(t)JI + IjX(t)-Xh(t)I < CII(I-Ph)U(t)JI, t E J o' (5.8)

All points on regular solution curves may be classified as being either

nonsingular points or limit points. It is interesting to see what types of

local parametrizations correspond to these two types of points as considered

in the first two parts of [5].

In defining nonsingular points and limit points, there is no need to

restrict ourselves to mildly nonlinear mappings.

Definition 5.3: Let (A) be given and suppose that a splitting (3.1) is available

......... • ,', -~~~.. . . . . . . . . ... ..... :-£ . -,. . . . .. 
- -
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together with the operator Q of (3.2). Then -- with a mild abuse of

notation -- a point xo = (u0 ,A0) E E, u0 E Z, 0 E T, is nonsingular if

D uF(x ) is an isomorphism of Z onto Y. The point is a limit point (with

respect to the direction of T) if Du F(x ) has a one-dimensional null space

in Z and

D F(xo) € rge D F(xo). (5.9)
X 0U 0

The regularity of such points is the content of the following result:

Proposition 5.4: Let the information of Definition 5.3 be given. If x0 E E

is either a nonsingular point or a limit point, where DF(x ) c L(X,Y) is a

Fredholm operator of index 1, then x0  R(F).

Proof: If x0  is a nonsingular point, then, since DuF(xo ) maps onto Y,

we have rge DF(x o) = Y, and, since DF(x ) is a Fredholm mapping of index 1,
0 0

it follows that dim ker DF(xo) 1 and hence that A E R(F). If xo  is a000

limit point, then the formula DF(x )(w.p) = D uF(x )w + uDAF(x0 ) for (w,p) E X,

together with (5.9), implies that ker DF(xo) = ker DuF(xo ) x {OJ, and thus

dim ker DF(xo) = dim ker D uF(xo) = 1. Since DF(x ) is a Fredholm operator

of index 1, it follows that rge DF(x o ) = Y and again that x° E R(F).

We return again to the mildly nonlinear case (5.2). Clearly, since Q is

a Fredholm mapping of index 1, so is DF(x) = Q + KDG(x) for any x c X. Thus,

Proposition 5.4 applies. If x0  is a nonsingular point, then, because of

(Y x {O})n ker DF(xo) = {O}, we may choose as a local parametrization the subspace

V = Y x {01, the isomorphism A: Y - V defined by Aw = (w,O), wc Y, and

zo  (0,1). This parametrization amounts to the selection of X as the parameter

and corresponds in essence to the choice in the first part of [5]. The estimate

I
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(5.8) now reduces to

I1u(X)-uh(X)iI < CII(I-Ph)u(X)II, X o (5.10)

If x0 e X is a limit poirt, then with u0 e Y such that Du F(x0 )uo  0 ,

Iluol = 1, and Yo = span {u,}, Y1 = rge DuF(xo), it follows tnat Y = Y, isYo,

D uF(x ) is an isomorphism of Yl' and ker DF(x ) = Y 0 {x0. Since

(Y1 x1 R) A ker DF(xo) = {0}, we may use the local parametrization specified

by V = YI xI IR, the isomorphism A: Y - V defined by Aw = (wl ,t0) for

W = W + toUo Y, W1 E Y,' and zo = (UoO). This corresponds exactly to

the approach in the second part of [5].

6. More General Nonlinear Problems

The techniques and results presented here provide a unification which is

certainly of interest in itself, but their real value should derive from the

fact that the results are applicable to a wider class of problems than the

mildly nonlinear problems to which other known approaches appear to be restricted.

The full extent of this applicability is still under study, but our results

certainly cover problems which to our knowledge could not be handled by other

methods. A model problem of this type is discussed in this section.

The flexibility in our formulation lies in the freedom of choice of the

operator Q of (3.2). In the case of the mildly nonlinear operators discussed

in the previous section, Q may be chosen as the natural projection (5.1). For

more general operators, Q has to reflect more specifically some of the

properties of the problem. The flexibility in the choice of Q may even be

important in the case of mildly nonlinear boundary-value problems such as (5.4).

-.. ~...
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Although (5.4) can be transformed into a mildly nonlinear problem, the

techniques to be discussed below also allow for a direct use of the strong

form (5.4).

As our model problem, we consider here

arcan(j ) + g(u,X) = 0, 0 < < 1,

(6.1)

u(O) = u(l) = 0,

where g: IR2 -Il is a sufficiently smooth function. A problem of this type

was used in [3] as an example-case for numerical experimentation with problems

concerning the deformation of nonlinear rods.

An attempt to analyze (6.1) by means of a weak formulation as in the

previous section will run into difficulties because the resulting operator F

does not satisfy the required continuity and Lipschitz conditions. This is due

to the nonlinearity arising from the arctan function. In order to work with (6.1)

directly, let Z C 2[0,l] and Y = C°[0,l], and consider the operator

F: X = Z xIR 1  Y, F(x) a a[arctan(du)] + g(u,X), x = (u,X) e X,

(6.2)

where, for abbreviation, we use du = u. The derivative of F is given by

DF(x)(w,ij) = d 1 1 + D ug(u,Ak)w +vguXx=(,)cX
[I + (du)7 j u+~DguA.x=(,)sX

(w,1) E X. (6.3)
II

It is a straightforward (but somewhat tedious) matter to show that F is in-

i

!
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finitely differentiable and DF is Lipschitz-continuous on bounded subsets

in the sense of (4.5).

For G: X - Y, G(x) = g(u,X), x = (u,X) e X, it follows from Ascoli's

Theorem that, for fixed xo = (U0,A o) e X, DG(x ) e L(X,Y) is compact. In

view of this and (6.3), we now define

Q e L(X,Y), Q(w,p) = d dw', (w,U) 6 X. (6.4)

It is easy to prove the following two properties of Q:

(i) ker Q = {0} xIRl
(6.5)

(ii) QfZ x {01 is an isomorphism from Z x {01 onto Y.

In terms of Q and DG the derivative (6.3) of F at x has the form

OF(xo) = Q + DG(x0 ). (6.6)

Now proceed as before and let {Ph } be a family of projections Ph c L(Y)

of finite rank and define the subspaces (3.4). With Fh as in (3.7), we have I

F(x 0 - Fh(Xo) (I-Ph)DG(x ), and as in Section 5 we can show that

lim DFh(Xo) = DF(xo) in the uniform operator topology on L(X,Y). It follows
h+O
in turn that, for any local parametrization {V,A,z I of M(O) at a point

x0 = (U0 oA) c M(O), the condition (C) holds.

Clearly now, for the mapping F of (6.2) and with Q defined by (6.4),

our results apply to the problem (6.1). If xtt) = (u(t),X(t)), t E Jo, and

xh(t) = (uh(t),xh(t)), t E Jo, once again denote the points on the solution

segments of the original problem and the approximate problem, respectively, then

the estimate (4.6) takes here the form
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£ Hu(t)'uh(t)I C2 + +A(t)-Ah(t)I C ('- d[ du(t CO

(6.7)

The mapping F of (6.2) serves only as an example of the class of non-

linear operators to which the approach in this section may be applied. In

jprinciple, let F be any mapping of the form

F: X = Z x -Y, F(x) =N(x) + G(x), x e X. (6.8)

If x0 e X is a point for which Q = DN(x o) has the properties (6.5) and

DG(x ) is compact, then clearly the results apply.

We note in passing that the general discussion of nonsingular points and

limit points at the end of Section 5 and the corresponding parametrizations

carries over to mappings of the form (6.8).

7. The Reduced-Basis Technique

Our final example concerns the so-called reduced-basis technique which has

been receiving increased attention in the engineering literature (e.g., see the

survey [11] where other references are also given). The technique arises in the

context of a standard continuation procedure for nonlinear problems and is usually

viewed as a method for effecting considerable reductions in the size of the

systems of equations obtained from finite-element approximations. Alternately, as
I sI

discussed in [61, the technique corresponds to the constructio. of a set of finite-

element basis functions which closely reflects the properties of the solution

segment that is to be approximated. In this form, the reduced-basis technique turns

out to fit very naturally Into the general setting of this paper.

I; "" "" " • . .
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As noted earlier, condition (C) establishes a certain compatibility

between the discretization and local parametrization. In the previous two

sections, we saw that its validity can be ensured for certain classes of

operators without restricting the choice of the discretization and parametrization.

Conversely, it is possible to enforce condition (C) without placing any further

conditions on the mapping F by selecting certain types of discretizations and

parametrizations inherent to the problem. The reduced-basis technique represents

an example of this latter approach.

As usual, suppose that the information (A) is given and, for ease of

notation, assume that the mapping F is defined on all of X. For a fixed

Yo e F(R(F)) and x0  M(yo ) we consider the mapping

FO: X - Y, F (x) = F(x o+x), x X, (7.1)

and note that 0 e M (yo) = F'1 )(y ) n R(F ). Now our procedure is applied
0 0 0 0 0

to F rather than F.

For a splitting (3.1) of X, we choose X = Z * T, where T = ker DF(x )

and Z is any complementary subspace. Then Q = DF(x0 ) e L(X,Y) satisfies

ker Q = T, and QIZ maps Z isomorphically onto Y. As usual, let a family

(Ph} of finite-rank projections of Y be given for which (3.3) holds and

define the subspaces (3.4). For a local parametrization {V,DA,zo}, we now

choose V = Z, A = AV = (QZ)
"l, and any nonzero vector z E T. Then we have

DFoh(O)A = (I-Ph)QA + PhOFo(O)A

= (I-Ph)DF(x )A + PhDF(xo)A

= DF(x 0)AV = I,
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jwhere I is the identity on Y. In other words, condition (C) holds trivially,

regardless of the nature of F.

Now Theorem 4.5 applied to F ensures the existence of an approximate

solution segment xoh(t) = 0 + tz° + Anh(t) E Xh, t E Jo, satisfying

PhFo(xoh(t)) = Yoh' t e Jo. Therefore, x(t) = xo + xoh(t) lies in x° + Xh

and satisfies

FhF(x (t)) = Yoh' t E Jo. (7.2)

From the estimate (4.6), we see that xoh(O) = 0 and thus xR(O) = xo. By

differentiation of (7.2) with respect to t at t = 0, it follows that

0 = PhDF(Xo)(ZO + AnO(O)) = Phn(O). (7.3)

Since ° and tzo + Ah(t) are in Yh' the same holds for nh(t), t E Jo%

whence (7.3) implies that nO(O) =0 or d x(O) = z.

Hence, the solution segment xh(t), t C Jo, passes through xo  and has

the same tangent direction as the original curve. By appropriate choice of the

space Z and the projections Ph' it is easy to ensure that higher derivatives

of the original curve and the approximate curve also agree at xo . (Note,

however, that the validity of condition (C) requires only that ker DF(xo ) X
0 h

and not any additi3nal matching of higher derivatives at xo.) This is precisely

the approach of the reduced-basis technique; that is, the method uses the first

few directions of the moving frame of the original solution curve Mo(yo ) at

the origin as the basis vectors for the approximating subspaces Xh. For some

details and an error assessment,we refer to [6]. As the mentioned survey [11]

already indicates, the method is certainly beginning to prove itself very

I
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effective for the solution of various geometrically nonlinear structural

problems.

aAi
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